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ABSTRACT 

Wavelet theory provides an attractive approach to signal and image compression. This work investigates a 
new approach for wavelet transform coefficient selection for efficient image compression. For a desired 
image compression ratio (50:1), wavelet scale thresholds are derived via a multiagent stochastic 
optimization process. Previous work has demonstrated an interscale relationship between the stochastically 
optimized wavelet coefficient thresholds. Based on the experimental results, a deterministic wavelet 
coefficient selection criterion is hypothesized and the constants of the equation statistically derived. 
Experimental results of the stochastic optimization and deterministic approaches are compared and 
contrasted with results from previously published wavelet coefficient threshold strategies. 

Keywords: wavelet transform, image compression, stochastic optimization. 

1. INTRODUCTION 

Wavelets originated from the analysis of seismic data by J. Morlet.1 A wavelet is a function y/ whose 
dilations and translations 

V**(0 = 4-v( —J.     a>0,    beft (1) 

form a basis in Is .Z3 The continuous wavelet transform maps a function / to a set of wavelet coefficients 
which vary continuously over (a, b) 

F(a,b) = ~\f(t)-J^-~-\dt. (2) 

Given an orthonormal wavelet basis, any Is function / can be represented as a (possibly infinite) 
summation 

/(0 = 1X^(0 (3) 

where the wavelet coefficients dah are defined as the scalar inner product 

<*„, = ] f(t)V,Jt)dt. (4) 

The wavelet coefficients correspond to the projection of f(t) onto the coefficient's associated wavelet. 
Wavelet basis sets can be orthogonal or non-orthogonal, and each wavelet can have compact or infinite 
support. For image compression, one does not want to transform the image into more coefficients than 
necessary to completely characterize the image. Orthogonal wavelets, such as the Haar and Daubechies 
wavelets, provide an efficient and economical approach to the decomposing of images into 
multiresolutional representations.4 Therefore, an orthogonal wavelet (the four coefficient Daubechies 
wavelet) is used in this research. 

Traditionally, image transform coding or compression methods, such as the discrete cosine transform, rely         
on high energy compaction with an n x n passband coefficient selection criterion. The wavelet transform      j Codes 
generally results in poor energy compaction, so an alternative strategy is required for wavelet coefficient 
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selection. This paper investigates a multiagent stochastic optimization approach for wavelet coefficient 
selection, and a statistical derivation of a deterministic equation for wavelet coefficient selection. This 
derivation is based on empirical data derived from the stochastic optimization of the coefficient thresholds. 

1.1. Multiresolution coding theory 

Performing the Fourier transform decomposes an image into a frequency representation and allows an 
analyst to determine if a particular frequency is present, but does not provide any spatial information. The 
wavelet transform, unlike the Fourier transform, produces a spatial-frequency representation that has good 
localization in both domains. 

The wavelet transform filters the data and results in a lowpass, or blurred, version of the original, and a 
highpass, or detailed, version. The lowpass image is recursively filtered to produce a blurred and detail 
image of itself. Because the wavelet transform used in this work is separable, the image wavelet transform 
can be implemented as successive one-dimensional transforms of the row and columns. The resulting 
image has a horizontal detailed image, a vertical detailed image, a diagonal detailed image, and a blurred 
image. Each transform consists of a wavelet dilation, or wavelet resolution. 

We are interested in a discrete sublattice of the continuous wavelet since image data is discrete in nature. 
Thus, the discrete wavelet is 

ym.„« = V'2y 
x-nbaa0 

) 
(5) 

where a0 and b0 are constants. In our case, a0 = 2 and b0 = 1. Rewriting the wavelet transform in terms 
of the inner products of the finer resolution wavelet transform shows that the discrete multiresolutional 
decomposition can be performed using the filters h and g, given that 

H(0) = l 

|#(ü>)|2+|//(ü;+7r)|2=l (6) 

where H(co) represents the Fourier transform of the filter h.5'6 The corresponding highpass filter g is 
defined via 

G{(0) = e-iaH'{cu+n) (7) 

where //*(■) is the complex conjugate of //(■), and G(co) is the Fourier transform of g. 

Directly implementing the wavelet transform as given in Eq. 2 is inefficient. A multiresolutional 
decomposition algorithm has been developed that accomplishes the wavelet transform in order 
N log //operations where N is the length of the data.7 The algorithm introduces an auxiliary function 
(p(x) related to y/(x) by 

y(x) = ^h(k)$(x-k) (8) 

where <j>(x) satisfies 

^x) = Jjg{k)<f>{2x-k). (9) 

1.2. Wavelet compression techniques 

Wavelet image coding techniques include wavelet8 and coefficient9 selection approaches, as well as hybrid 
schemes which combine wavelets with other signal representations.10 In a coefficient selection approach, 
image compression is achieved by retaining a subset of coefficients from the wavelet representation, and 
zeroing the remaining coefficients. The number of coefficients selected is based on the maximum mean- 
squared error (MSE) acceptable, the compression ratio required, or a combination of both. The coefficients 
selected are then coded using an entropy-based encoder that stores the value of the coefficient ,and its 
location within the current scale. 



Different sets of retained coefficients can result in drastically different image reconstructions. The 
traditional method for selection is simply a passband filter of some height and width that passes a 
rectangular region of the transformed data and sets the rest to zero. DeVore et al.'' show that the wavelet 
transform does not compact energy into a particular region, making the passband approach suboptimal. 
DeVore presents a wavelet coefficient selection algorithm that keeps the highest N coefficients and 
discards the rest. Argast et al.12 demonstrate that coefficients from lower resolution scales affect a larger 
part of the image than coefficients in the high resolution scales. Argast presents an algorithm for selecting 
coefficients based on a logarithmic threshold, where the threshold of each scale is twice the threshold of the 
previous lower resolution scale. This compression strategy of Argast is given as: 

for J = Sto\ { 
for each element k in scale J 
if CR% 
else 

= GOAL then stop 

[0          if \ct\<A-2' 
set ck=<                  '   ' 

[ct         otherwise 

} end 

where ct is a transform coefficient, CR% is the current compression percentage, A is a constant weight 
factor, and J and 5 are respectively the current and total wavelet scales. The constant A is set (initially 
set to 0.01 in their paper) and then iteratively adjusted so that the compression ratio can be met. For a 
selected compression ratio, this approach results in a lower mean-squared error in the reconstructed images 
than DeVore's algorithm. 

Previous preliminary work9 has demonstrated an interscale relationship between an image's stochastically 
derived wavelet coefficient thresholds. This paper increases the number of images stochastically 
optimized, and for a selected compression ratio, statistically derives from empirical results a deterministic 
approach for wavelet coefficient selection. 

2. STOCHASTIC OPTIMIZATION 

Since the 1950's, random (or stochastic) search techniques have been used for function optimization. 
Random search strategies are competitive with traditional search strategies (such as gradient search 
techniques) when the cost or objective function is expensive or difficult to compute, or when the function to 
be minimized has many suboptimal solutions (local minima). Other advantages include the ease of 
programming, inexpensive realization of possible solutions, as well as flexibility in the expression of the 
criterion function.13 

Stochastic optimization techniques are based on either a single point or multiple agent algorithms. Single 
point algorithms include the random walk, the creeping random method,14 and the method of Solis and 
Wets.15 Multiple agent stochastic search algorithms, such as genetic algorithms,16 evolutionary strategies,n 

and evolutionary programming (EP),IS are becoming well known for their optimization properties. A 
thorough discussion of the EP algorithm, and other evolutionary algorithms, is given by Back and 
Schwefel.17 

In EP, a population of models (solutions) generate new models via a mutation process. The new models 
compete with the original (parent) population for survival to the next iteration. The mutation process is a 
random perturbation of the parameters, with the magnitude of the perturbation generally tied to the fitness 
of the parent. Although useful in escaping local minima, the random nature of the stochastic mutation 
process can be inefficient. To increase convergence efficiency, variants of the EP algorithm have been 
developed.19'20 The presented work imbeds the method of Solis and Wets into the traditional evolutionary 
programming paradigm. The parent models not only produce a single offspring by way of the mutation 
process, but are also modified via the Solis and Wets algorithm. Figure 1 illustrates this hybrid 
optimization approach. 



component corresponds to the final low-pass (DC) component of the wavelet transform). Figure 2 displays 
a multiresolutional wavelet transform, and the threshold array indices corresponding to the wavelet 
transform scales. 

0...6     7 8 9 

Figure 2. Multiresolutional wavelet transform and associated scales. 

For each image, the compression ratio was set to 50:1 (CA% = 2.0%). The four coefficient Daubechies 
wavelet is used for the compression process. Since we are currently interested in the coefficient thresholds, 
optimization of the wavelet is beyond the scope of this paper. Figure 3 displays the MSE and percentage of 
selected coefficients of the best coefficient threshold strategy for two images during the stochastic 
optimization process. As shown in the figures, the best solution of the evolutionary programming process 
quickly achieves the desired compression ratio. 
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Figure 3. Stochastic optimization performance for two images 

For all of the images compressed, the coefficient threshold values of the best compression strategy (the best 
T vector) derived after 600 iterations are tabulated in Table 1. The stochastically derived thresholds for 
several of these images are also shown in Figure 4. It is important to note that for all images, the values for 
the lower scales are below all wavelet coefficient values in those scales, and therefore all coefficients in 
these scales are kept for image reconstruction by the compression strategy. Table 1 italicizes the threshold 
values which are less than the minimum wavelet coefficient value in the respective scale. As shown in the 
table and figure, the higher scale thresholds generally demonstrate an interscale relationship, with the value 
of the higher scale roughly double the value of the lower. 



Table 1. Derived wavelet coefficient thresholds (italicized thresholds < min scale coefficient value). 
Image 0 1 2 3 4 5 6 7 8 9 

ape 2.4653 0.7767 0 0 0 0.6890 1.8321 3.3578 6.7787 7.9643 
bird 9.1476 0.7630 1.0689 0 0.3163 0.9366 1.7169 3.6900 8.0887 14.233 

fruits 5.8495 3.4984 3.2286 0 0.4316 1.3324 3.1653 6.9482 14.338 25.711 
Lenna 16.654 1.5507 1.1368 0 0.6856 1.6835 3.4750 6.6345 15.244 23.488 
lisht 21.811 6.7336 0 0 1.0330 2.3785 5.0125 9.1587 18.91 26.69 

ritchie 7.1629 6.9475 0 0 0.2866 0.8181 2.2308 4.3514 7.8771 13.065 
truck 0.7322 0 0.4224 0 1.1629 2.1504 3.6688 5.7335 10.454 19.302 
watch 1.7094 0 0.2452 0 0.5691 1.5518 2.1343 4.8156 9.9992 15.582 

woman 1 34.656 0 0 0 0 1.5520 2.9408 7.0446 13.218 249.16 
woman2 6.3236 1.9193 0.3891 0 0 0.4538 2.0579 3.4584 8.0179 11.838 

m        TI-        »n 

wavelet scale 
Figure 4. Wavelet coefficient thresholds for several images. 

To measure if the coefficient threshold values derived from the optimization process are related to the 
variance or power of an image, the intensity histogram of the "watch" image was manipulated and the 
resulting new images where stored. The coefficient thresholds for each version were stochastically 
optimized, and the resulting thresholds are displayed in Table 2 and Figure 5. The amount of energy and 
power of each image were also calculated, and each image's associated power is used to label the images. 
The figure and table demonstrate that the thresholds are functionally related (in some way) to the energy or 
power of the image, with images with a higher power content requiring higher coefficient thresholds for 
efficient image compression. 

Table 2. ' fhresholds for watch image versions {italicized thresholds < min. coefficient value). 
Power 0 1 2 3 4 5 6 7 8 9 

487.681 1.7094 0 0.2452 0 0.5691 1.5518 2.1343 4.8156 9.9992 15.582 
2463.08 24.689 0 0.0633 0.5338 1.1229 2.0076 5.2575 8.6799 22.546 41.290 
3631.97 5.9185 0 0 0 1.1298 3.3120 6.6504 12.405 26.771 50.148 
809.566 3.4421 0.6452 0 0 0.8541 1.3262 3.2021 4.5852 13.538 23.507 
6085.99 6.0353 1.0274 0 0 1.8211 3.9013 7.8937 16.265 33.507 59.317 
1796.08 6.4429 0 0.7791 0 1.3001 2.2102 4.8936 8.5007 17.988 33.006 
1916.7 4.3556 0 0.3967 0 1.0643 2.0814 4.9868 8.8207 18.572 33.955 

The variance or power of an image is defined as a1 = ]£(/((/)-^,)!, where /(//)is the pixel intensity at 
NN 

location (/,;') and p., is the mean intensity value of the image. 
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Figure 5. Coefficient thresholds for an image at various levels of power. 

5. STATISTICAL ANALYSIS OF HYPOTHESIZED COMPRESSION SCHEME 

In this section, we hypothesize the nature of the relationship suggested by the results of the multiagent 
stochastic optimization process, and derive a deterministic equation based on the statistics derived from the 
data. For a given compression ratio, we propose a coefficient selection criterion of the form 

T,=K(CR)-f(&2)-T (12) 

where Tt is again the coefficient threshold associated with the z'th wavelet scale, K(CR) is a function of 

the compression ratio, and f(o~) is a function of the power content of the image. In this work, we 

hypothesize the functional form of /(<T2) to be 

f{a-) = {a1)B (13) 

where B is a constant. In this investigation, a single compression ratio has been applied to all images, and 
therefore K is considered a constant. The hypothesized equation can be written as 

T. =K{o-)BT (14) 

We will now apply regression analysis techniques to calculate a value for B based on the thresholds 
derived in the stochastic optimization process. For both constants B and K, only the coefficient thresholds 
from scales four and above, which actually zero coefficients in the scale, are used for the statistical 
derivation. Threshold values in scales zero through three are not used in the analysis, since any threshold 
value below the minimum coefficient value of a scale (i.e. any value Tt such that 0 < 7 < min{lcul}) 
results in the same image reconstruction. 

5.1. Determination of the relationship between threshold value and power 

The intensity-adjusted "watch" images, and the stochastically derived coefficient thresholds, are used to 
determine the relationship between image power and the threshold values. Dividing both sides of Eq. 14 by 
2' and taking the logarithm of both sides gives 

log(f) = Slog((T2) + logK. (15) 

This is a linear equation y = Bx + c, with y = log(-j-), x = log(cr), and c - log AT, and linear regression 

techniques21 are applied for the estimate of B. Given the assumption that the are samples are independent 
and normally distributed about the true values also allows for statistical inference and validation tests to be 
performed. The maximum likelihood regression estimate of B is given as 



ß: 
j>,-i)0-,-)-) 
1=1  (16) 

Figure 6 displays the sample pairs y = log(y) vs. x = logCP), and line determined by the linear regression 

estimates for the threshold coefficients under analysis. 
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Figure 6. Relationship between and y = log(y-) and x = log(<72). 

The maximum likelihood value for the slope is computed to be B = 0.4714, with an associated coefficient 
of determination for the regression line is equal to R1 =91.37%. The value of B is very close to 0.5, and 
assuming the normal model allows the use of the F-statistic associated with the hypothesis that H0:B= 'A 
vs. //,: Z? * K. Computing an a = 0.10 level of significance test, the corresponding F-statistic requires one 
to reject H0: B = y2 if the statistic is greater than F„ (1,40) = 2.84. The F-statistic is given as 

Bn 
■')' 

(0.5-0.4714)2 

0.0139/ = 1.560 (17) 
/26.505 

which is less than Fs(1,40). So one fails to reject that H0:B = V2 based on the data analyzed. This reduces 
the functional from of Eq. 13 to 

fio-) = a. (18) 

Since B = 0.5 provides a simple interpretation, with coefficient threshold values directly related to the 
standard deviation of the image intensities, we will use 5 = 0.5 for the determination of the constant K. 

5.2. Determination of the constant K 

Given the derived value of B, our hypothesized equation (Eq. 14) is now 

7\ = KaT (19) 

Dividing both sides by a2' derives a value of K, for each image and scale under analysis, and these values 
are used as a sample to derive an estimate of K. Nine images of Table 1 are used for the computation of 
K, with the "Lenna" image reserved for algorithm testing and comparison. It was found that the mean 
value of K did not achieve adequate compression on the test image, since the mean will "on average" 
produce the desired compression. To more adequately achieve the desired compression ratio, one-half of a 
standard deviation of the {K:) sample is added to the mean K to produce K.   K  is simply computed as 



K = K+- (20) 

Note that the highest scale threshold value of image "woman2" is a wild point, and this value was not used 
in the computation of K. For the images analyzed, the estimate K is computed as K = 9.360-10~\ and 
the standard deviation of [Kt] is st = 6.217-10"4. The median of the {Kt} sample, a more robust measure 

of centrality when wild points exist, is in close agreement with A1, with KMED =9.604 -10"4. For the single 
compression ratio (50:1) examined in this paper, our hypothesized deterministic equation is finalized as 

7.=(1.247 -10"3-o-)2' (21) 

Unlike the algorithms of DeVore and Argast and the stochastically optimization approach, the coefficients 
of Eq. 21 have been statistically determined, and the resulting compression ratio for an image using Eq. 21 
will not be exactly 50:1. However, this equation requires neither coefficient sorting nor iterative 
optimization, and is therefore computationally more efficient than the other approaches. The next section 
compares this deterministic equation with the algorithms previously discussed in Section 2 on the "Lenna" 
image. 

6. COMPARISON OF IMAGE COMPRESSION APPROACHES 

The "Lenna" image, not used for the statistical determination of Eq. 21, is used for a comparative analysis 
of the wavelet compression algorithms. Table 3 compares the algorithms of DeVore, Argast, the 
stochastically determined thresholds, and the wavelet coefficient thresholds calculated using the 
deterministic equation (Eq. 21), on the "Lenna" image. 

Table 3. Comparison of algorithms on the "Lenna" image. 
Algorithm MSE % of Distortion Signal-to-Noise Compression Ratio 
DeVore 135.24 5.91 % 12.29 dB 50:1 
Argast 75.80 3.31 % 14.80 dB 50:1 
Stochastic 68.26 3.02 % 15.19 dB 50:1 
Eq. 21 75.87 3.31 % 14.80 dB 56:1 

Unfortunately, the standard deviation of the sample {K.t} is on the same order of magnitude as the mean K, 
and this indicates that the estimates of K vary dramatically in the sample. This variability is illustrated in 
Table 4, where the MSE and achieved compression ratio are compared for four images. As shown in the 
table, the compression ratio for the equation ranges from 33:1 to 86:1. This is due to the large deviation of 
the estimates for K in the images analyzed. This variability severely limits the usefulness of the 
deterministic equation when achievement of a compression ratio is required, and brings the assumption that 
K is a function of compression ratio into question. 

Table 4. Comparison of algorithm MSE anc compression ratio on four images. 
Imaae light bird fruits truck 

Algorithm MSE CR MSE CR MSE CR MSE CR 
DeVore 193.91 50:1 30.73 50:1 141.87 50:1 124.04 50:1 
Argast 129.38 50:1 19.81 50:1 80.13 50:1 80.74 50:1 
Stochastic 118.15 50:1 19.50 50:1 68.97 50:1 75.40 50:1 
Eq. 21 152.28 66:1 34.30 86:1 83.68 64:1 58.26 33:1 

As shown by Tables 3 and 4, the wavelet coefficient thresholds found by the stochastic optimization 
process are superior to all other approaches discussed in this work. For every image tested, the multiagent 
stochastic process produced the coefficient threshold strategy with the minimum MSE. The method of 
Argast, although outperformed by our stochastic optimization process, was significantly better than the 
method of DeVore for all images tested. 



Figure 7 displays the original and restored "Lenna" images. These images represent the results from the 
application of the various 50:1 wavelet compression approaches, each using the four-coefficient wavelet of 
Daubechies. 

7. CONCLUSIONS 

In conclusion, multiagent stochastic optimization provides a valuable tool for the investigation of complex 
problems. In this work, we have developed a stochastic optimization technique to determine the wavelet 
coefficient thresholds which best compress and restore an image for a given compression ratio. With the 
stochastically-derived wavelet coefficient thresholds, we have shown evidence of a strong statistical 
relationship between threshold magnitude and the power of the image. For every image analyzed and 
tested, the compression strategy derived via our stochastic optimization process outperforms the iterative 
and sorting wavelet coefficient threshold procedures, producing compression strategies that achieve the 
required compression with the consistently minimal MSE. 

A deterministic threshold selection equation, based on the stochastically-derived thresholds, was derived. 
This equation has shown superior capability for image reconstructive ability when compared to the 
approach of DeVore, and is computationally more efficient than the techniques of Argast or Waagen et al.9 

However, the variability of the hypothesized constant K limits the equation's usefulness for image 
compression to situations with "on-average" compression requirements. 

This work represents ongoing research, and future work will investigate the functional relationship between 
wavelet coefficient threshold values and the desired compression ratio for several compression ratios. 
Other criteria for image compression include optimization based on a desired MSE, or distortion 
percentage, will also be investigated. The hypothesized equation for image compression will be re- 
evaluated, with the goal of minimizing the variability of any constants in the equation. The sensitivity of 
the threshold selection equation to the formulation of the wavelet function is also a valuable topic for 
research. 
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Figure 7. Image reconstructions from 50:1 compressed representations generated by Argast (a)^, 
DeVore (b), stochastic optimization (c), and Eq. 21 (d) (at 56:1) approaches. Original image (e). 


